
CS 302: INTRODUCTION TO PROGRAMMING

Lectures 5&6

STRINGS

● Sequence of characters

● Reference type (non-primitive)

● Specified by double quotes (")

● Can have length 0 – empty string = ""

● Examples:

● String name = "Dan";

● String className = "CS302: Intro to

Programming";

STRING OPERATIONS

● Concatenation (+)

● Have already seen in our output statements

● Ex: String name = "Ned" + " Stark";

● String className = "cs";

● int classNum = 302;

● className = className + classNum; //className is now:
“cs302”

● Length

● String name = "Luke Skywalker";

● int length = name.length(); //length = 14

– Remember identifier.methodName()

CHARS

● Single character

● Specified by single quotes (')

● Has numeric value

● Ex.

char myChar = 'a';

System.out.println(myChar); //will print out: a

myChar++;

System.out.println(myChar); //will print out: b

ASCII TABLE VALUES

int x = (int) 'a';
System.out.println(x); //output: 97
char myChar = (char) (x++);
System.out.println(myChar); //output: b

CHARAT

● Method to find a specific character within a String

● Strings are 0-indexed

● Ex.

● String name = "Dan Szafir";

● char first = name.charAt(0); //first = 'D'

● int length = name.length(); //length = ?

● char last = name.charAt(length – 1); //last = 'r'

● What if I had done:

char last = name.charAt(length);

SUBSTRINGS
● What if I want to get part of a String?

● stringName.substring([start], [end])

● Will include charAt(start)

● Will include charAt(end - 1);

● Will NOT include charAt(end)

● Start, end, must be ints

● Remember the 0-indexed nature of Strings

● Ex.

● String name = "Dan Szafir";

● String first = name.substring(0, 3);

● String last = name.substring(4);

INDEXOF

● Opposite of charAt

● Finds the first occurrence of a char in a String

System.out.println(“Enter your favorite team”);

String name = in.nextLine(); //Assume Boston Bruins was

entered

int spaceIndex = name.indexOf(' '); //spaceIndex = 6

String city = name.substring(0, spaceIndex);

● Will return -1 if the specified character was NOT in the String

STRING METHODS SUMMARY

● .length() - counts the number of chars in a String

● .charAt([index]) – returns the char at [index]

● .substring([start], [end]) – returns a String whose content

is the character at [start] up to but not including the char

at [end]

● .substring([start]) – returns a String whose content is the

character at [start] through the end of the original String

● .indexOf([char]) – returns the first occurrence of [char] in

the String, or -1 if it wasn't found

EXAMPLE CODE FOR USING METHODS FROM STRING CLASS

Switch to Eclipse

(CHAP. 3)IF STATEMENT

● What if I want to make a decision?

● Parts:

● Boolean expression (a statement that is either true or false)

● Code

● Ex.

if (5 > 1)

{

System.out.println("Five is greater than 1");

}

COMPARING NUMBERS: RELATIONAL OPERATIONS

● ==

● Is something equal to

something else

● if (a == b)

● >

● Greater than

● <

● Less than

● >=

● Greater than or equal to

● <=

● Less than or equal to

● !=

● Not equal

● Precedence

● Lower precedence than

arithmetic operators

● Ex. what does (3 + 2 <

5) evaluate to?

COMPARING STRINGS

● Do NOT use ==

● Strings are reference

variables, not primitives

● Instead use .equals() and

.equalsIgnoreCase()

● Also .compareTo()

● Returns an int

● Format:

● stringOne.equals(stringTw

o)

String foo = "abcdef";

String bar = "ABCDEF";

if (foo.equals(bar))

{

 System.out.println("foo equals
bar");

}

if (foo.equalsIgnoreCase(bar))

{

 System.out.println("foo equals
bar if you ignore the case");

}

ELSE

● Else

● Code that executes if the boolean expression was

false
Boolean

Expressio
n

True

False

Code under if block
Code under else

block

Continue execution of code

ELSE EXAMPLE

String foo = "abcdef";

String bar = "ABCDEF";

if (foo.equals(bar))

{

 System.out.println("foo equals bar");

}

else

{

 System.out.println("foo doesn't equal bar");

}

ELSE IF
● What if I wanted to check more than one thing?

● if (test something)

● {

//do something

● }

● else if (test something else)

● {

//do something else

● }

● else

● {

//what to do if both of those tests were false

● }

IF, ELSE IF, AND ELSE

● If

● One or none

● If...Else

● One or another

● If...Else If...Else

● One of many

● The only thing you need is an if

● Can have if and else ifs with no else

● Can have if and else with no else ifs

● Can have if alone

● CANNOT have and else if or an else without a starting if

SCOPE

● Determines in what context values and

expressions are associated

● General Rule of Thumb:

● Variables defined within a set of braces are only

good within that set (and any nested sets)

PRACTICE 1

● Write a simple Log-In program:

● Input: Username

● Output:

– If username matches a known username output: "Hello

[username], good to see you again!"

– Else: "Invalid Login Attempt"

PRACTICE 2

● Write a program according to these specifications:

● Input: Day of the week, Year

● Output:

– If Sunday: “Yikes, tomorrow I have to work again :("

– If Saturday: “Hooray, I can hang out with friends today :)"

– If Monday: “Alas, I’m lecturing right now~~~ but cheer up"

– Otherwise: "Just another weekday, let’s enjoy working"

– If Year is evenly divisible by 4: "Leap year, we can all live 1

more day this year, isn’t that great?"

● Write a program to convert numerical grades to
letter grades:

● Input: a numerical grade 0 – 100

● Output:

– Grade: 90 - 100: "A, you must have a great IQ score"

– Grade: 80 – 90: "B, it's okay, but just don't tell your mom"

– Grade 70 – 80: "C, got addicted to Diablo?"

– Grade 60 – 70: "D, oops, the student passes out"

– Grade 0 – 60: "F, no matter what, your instructor is just
ruthless"

– Otherwise: "Error, invalid grade"

PRACTICE 3

PRACTICE 4: MULTI-PLANET WEIGHT CONVERTER

SWITCH STATEMENT

● Alternative to having if...else if... else if... else...

● Use if you are testing the same variable in each boolean expression

● Ex.

int day = in.nextInt(); String dayName = "";

switch(day)

{

 case 1: dayName = "Sunday"; break; //same as if (day == 1)

 case 2: dayName = "Monday"; break; //else if (day == 2)

 case 3: dayName = "Tuesday"; break;

 //...more cases...

 default: dayName = ""; break; //default is a catchall like else

statements

}

SWITCH STATEMENT

● Will "fall through" to the next case if there is no

break:

switch(day)

{

 case 1: dayName = "Sunday";

 case 2: dayName = "Monday"; break;

 case 3: dayName = "Tuesday"; break;

 //...more cases...

 default: dayName = ""; break;

}

What is the value of
dayName if day = 1?

SWITCH STATEMENT

● Sometimes you want to fall through

switch(day)

{

 case 1:

 case 7: dayType = "weekend"; break;

 case 2:

 case 3:

 case 4:

 case 5:

 case 6: dayType = "weekday"; break;

 default: dayType = "unknown"; break;

}

PRACTICE 5

● Use switch statement

● Take an int input for the nth day in a week (starting

from Sunday)

● If (Sat or Sun), print out “It's a weekend”

● If (MonTuTh), print out “It's a weekday”

● If (Wed), print out “Halfway there”

● If (Fri), print out “It's almost the weekend”

● Otherwise, print out “Not a valid day (day's should be 1-7)”

NESTED BRANCHES

● If statement within

another if, else if, or

else statement

if (I'm hungry)

{

 if (I feel like Italian)

 {

 Make spaghetti

 }

 else

 {

 Make a hamburger

 }

}

int temperature = in.nextInt();

int raining = in.nextInt(); //1 means yes, otherwise no

if (temperature > 70) {

 if (raining == 1) {

 S.o.pln(“Wear shorts and bring an umbrella”);

 }

 else {

 S.o.pln(“Wear shorts and sunglasses”);

 }

}

else {

 S.o.pln(“It is indeed a typical WI weather”);

}

BOOLEAN VARIABLES

● Booleans are either true or false;

● Ex.

● boolean failed = false;

● if (failed) //same as if (failed == true)

● {

//stop the program

● }

INTRO TO BOOLEAN OPERATORS

●I want an apple and an orange

●I want an apple or an orange

BOOLEAN OPERATORS

● Ways to combine boolean variables

● && = and

● || = or

● ! = not

VISUALIZING BOOLEAN OPERATORS

college || university
poverty && crime

cats && !dogs

VERBALLY VISUALLIZING BOOLEAN OPERATORS

● "I carry an umbrella if it rains or snows"

● if (rain || snow) : carry umbrella

● "I only wear shorts if its hot and sunny"

● if (hot && sunny) : wear shorts

BOOLEAN OPERATORS AND NESTING

if (I'm hungry)

{

 if (I feel like Italian)

 {

 Make spaghetti

 }

 else

 {

 Make a hamburger

 }

}

if (I'm hungry && I feel like

Italian)

{

 Make spaghetti

}

else if (I'm hungry)

{

 Make a hamburger

}

USE ! FOR NOT!

● Wrong

if (solved)

{ }

else

{

 //lots of code

}

● Right

if (!solved)

{

 //lots of code

}

//if(!solved) is the
same

//as if (solved == false)

INPUT VALIDATION

● Use if statements to make sure the user input

a valid value

● in.hasNextInt() - check if the user input an int

● in.hasNextDouble() – check if user input a

double

PRACTICE

● More complicated Login Program

● Input: Username, Password

● If username matches a known username and

password matches the corresponding password,

output: Giddy Up!

● Otherwise output: Invalid Login

● Known Usernames / Passwords:

– Jerry / porsche

– George / Bosco

